Apress - MATLAB Machine Learning Recipes: A Problem-Solution Approach, 2nd Edition (2019 EN)

Discussion in 'Artificial intelligence' started by Kanka, Oct 31, 2019.

  1. Kanka

    Kanka Well-Known Member Loyal User

    Messages:
    10,157
    Likes Received:
    264
    Trophy Points:
    83
    [​IMG]

    Author: Michael Paluszek, Stephanie Thomas
    Full Title: MATLAB Machine Learning Recipes: A Problem-Solution Approach, 2nd Edition
    Publisher: Apress; 2nd ed. edition (February 1, 2019)
    Year: 2019
    ISBN-13: 9781484239162 (978-1-4842-3916-2), 9781484239155 (978-1-4842-3915-5)
    ISBN-10: 1484239164, 1484239156
    Pages: 347
    Language: English
    Genre: Educational: Artificial Intelligence
    File type: PDF (True), Code Files
    Quality: 10/10
    Price: 26.74 €


    Harness the power of MATLAB to resolve a wide range of machine learning challenges. This book provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem. All code in MATLAB Machine Learning Recipes: A Problem-Solution Approach is executable. The toolbox that the code uses provides a complete set of functions needed to implement all aspects of machine learning. Authors Michael Paluszek and Stephanie Thomas show how all of these technologies allow the reader to build sophisticated applications to solve problems with pattern recognition, autonomous driving, expert systems, and much more.


    Learn:
    ✓ How to write code for machine learning, adaptive control and estimation using MATLAB
    ✓ How these three areas complement each other
    ✓ How these three areas are needed for robust machine learning applications
    ✓ How to use MATLAB graphics and visualization tools for machine learning
    ✓ How to code real world examples in MATLAB for major applications of machine learning in big data

    Features:
    ✓ Utilizes real world examples in MATLAB for major applications of machine learning in big data
    ✓ Comes with complete working MATLAB source code
    ✓ Shows how to use MATLAB graphics and visualization tools for machine learning

    Who This Book Is For:
    The primary audiences are engineers, data scientists and students wanting a comprehensive and code cookbook rich in examples on machine learning using MATLAB.

    -------------
     

Share This Page